Scientists at the NEFSC Milford Lab are shining some light on ocean acidification by examining how a more acidic ocean affects something we care about: the oysters, surfclams, and scallops that we eat.
Most of us have heard that the climate is changing as our atmosphere deals with a massive increase in carbon dioxide emissions. While climate change gets most of the publicity, did you know that the ocean absorbs about a quarter of that extra carbon dioxide? There are pros and cons to this: the ocean provides a buffer without which our climate would warm more rapidly, but the process of absorbing carbon dioxide is making the ocean less basic and more acidic. Ocean acidification is happening in places most of us don’t regularly visit, but it has the potential to radically change conditions for the sea life we know and rely on for sustenance.
The pH scale measures how acidic a substance is, ranging from 0 to 14. The lower the number, the more acidic the substance. pH 7 is neutral, neither acidic or basic. Substances below pH 7 are considered acidic, while substances above pH 7 are considered basic (or alkaline). The scale is logarithmic, meaning that as you go down by one number, a substance is actually ten times more acidic than the next highest value, for example, a pH of 5 is ten times more acidic than a pH of 6. It helps to consider examples from everyday life: Lemon juice? Very acidic, with a pH of about 2. Milk? Just under 7, which is neutral. Oven cleaner? Very basic at pH 13…